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Viscous interaction over concave and convex 
surfaces at hypersonic speeds 

By S .  MOHAMMADIAN 
Aeronautics Department, Imperial College, London? 

(Received 21 August 1971 and in revised form 20 March 1972) 

The growth of hypersonic boundary layers over both concave and convex surfaces 
is described, the strong-viscous-interaction equation due to Cheng et al. (1961) for 
curved surfaces with sharp leading edges being solved asymptotically for small 
and large arguments. Both the asymptotic solution for large arguments and a 
numerical integration predict an oscillatory behaviour of the boundary-layer 
thickness on concave surfaces. A modification of Cheng’s theory, as suggested 
by Sullivan (1968) and Stollery (1970), is also examined and compared with 
experimental data reported here. The experiments were conducted in air using 
a hypersonic gun tunnel under cold wall conditions at  N, = 12.25. They included 
measurement of surface pressure, heat-transfer distributions and schlieren 
studies for concave and convex models. 

1. Introduction 
At high Mach numbers the effects of compression and energy dissipation 

produce considerable increases in temperature. This causes the boundary layer 
to become very thick, but rapid changes of boundary-layer growth can occur 
near sharp leading edges and in regions of strong pressure gradients. The inter- 
action between boundary-layer growth and the external inviscid flow can 
significantly modify the distribution of surface pressure and the heat-transfer 
rate. Therefore it is necessary to predict such mutual interaction before the 
body shape can be correctly designed to give a required performance and to 
withstand severe pressure and heating loads. The aim of this work is to enhance 
such predictions by comparing theory and experiments for hypersonic laminar 
flow over two-dimensional curved surfaces with sharp leading edges. 

2. Experimental work 
Surface-pressure and heat-transfer measurements were made using the no. 1 

hypersonic gun tunnel in the Aeronautics Department of Imperial College. 
Stollery (1966) and Needham (1963) describe this facility and its capabilities. 
The measurements were carried out at a Mach number of 12.25 with a stagnation 
condition of po = 1600 psia, To = 1300 OK and a Reynolds number R = 0.86 x 105. 

t Present address: Mechanical Engineering Department, Arya-Mehr University, 
Teheran, Iran. 
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FIGURE 1. Layout of the models. (a )  Concave heat-transfer andpressure models, y = h3, 
scale in inches. ( b )  Convex heat-transfer and pressure models; the fairing 3 in. downstream 
of the 18" wedge is g = 0 . 0 0 2 6 ~ ~  - 0-021 ls3 with the first and second derivatives equal to zero 
at the joining points with the two flat parts of the model. 

The calibration of the Mach 12 contoured nozzle was carried out by Mohammadian 
( 1968). Surface-pressure measurements were made using strain-gauge trans- 
ducers, while thin-film platinum resistance thermometers were used to measure 
the surface temperature during the run. The gauges were coupled into a Wheat- 
stone-bridge circuit and the out-of-balance voltage, due to the change in 
resistance of the gauges with temperature, was amplified and fed into an elec- 
tronic analog circuit. The analog circuit solves the thermal-diffusion equation 
to give the heat-transfer rates as a function of time. Full details of the theory 
and development of the electronic apparatus have been reported by Holden 
(1964) and Hunter (1969). Models used for the present experimental study were 
cubic concave and convex, the co-ordinates and the layout of the models being 
given in figure 1. Figure 2 (plate 1) shows the pressure and heat-transfer models. 
The running time with steady flow was about 15 ms. 

The flow over the models was attached and laminar, according to the schlieren 
photographs and heat-transfer traces. Typical schlieren pictures of the flow over 
concave and conyex models at M, = 12.25 are shown in figures 3 and 4 (plate 2). 
The light line in the schlieren photograph appears because the schlieren system 
is sensitive to 2p/2y and, in hypersonic boundary layers, the maximum density 
gradient occurs towards the outer edge. The outer edge of this line in the schlieren 
picture is very close to the outer edge of the boundary layer and can be taken 
as a measure of the boundary-layer thickness. Boundary-layer profiles of Pitot 
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pressure, measured by Needham (1963) a t  a Mach number of M = 9.7, confirm 
the above argument. Spanwise heat-transfer measurements showed that the 
flow was reasonably two-dimensional over both concave and convex surfaces. 

3. Analysis 
At hypersonic speeds, because of the thick boundary layer, the effective body 

shape can no longer be taken as the surface of the body and the surface of the 
body plus the displacement thickness of the boundary layer must be used. There- 
fore the viscous interaction effects must be considered to be as important as the 
first-order effects in any boundary-layer calculation involving a thick layer. 

Three sets of equations are required to represent this type of flow: boundary- 
layer equations, inviscid-flow equations and a coupling equation. These equations 
can be summarized by the following three functional relations: 

Ye = fAa*), (3) 

where a* is the displacement thickness, ye ( = ye(x)) is the effective body position 
for the inviscid flow and pe is the pressure at that position. Hence a complete 
solution for the flow over a given shape (y, = yw(s)) is possible once methods of 
estimating the boundary-layer growth, external pressure distribution and 
effective-body streamline have been found. 

By combining Lees’ (1956) similarity solution for the boundary-layer growth 
with the Newton-Busemann inviscid equation (Cox & Crabtree 1965) and 
assuming that the effective body shape is the surface of the body plus the dis- 
placement thickness (ye = y, +a*), we obtain the following equation, which is 
known as Cheng’s (1961) viscous-interaction equation: 

- 
where xE = 0*664( 1 + 2*6T,/T0) X 

and X = M$ d(C/R).  

is the viscous interaction parameter, T, and To are wall and total temperature 
respectively, C is the constant of proportionality in the linear viscosity- 
temperature relation and R is the Reynolds number based on distance x from the 
leading edge. The primes in (4) denote differentiation with respect to x. 

For a family of shapes yw N xn Stollery (1970) scales the above equation to give 

(z- .p)  [(zz’)4]’ = 1, (5 )  

where 

and 
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CI. being the angle of incidence. In  terms of the new variables z and 6 the ex- 
pressions for the pressure, the displacement thickness and the Stanton number 
St become 

p/pm/ya2M: = ( zz ' ) ) ,  
6*laE = (2 - p), 

1 -- A St 
1.328p3 - z-gn2' 

Equation ( 5 )  is singular a t  the origin and admits the solution z = 5" for 5 $. 0. 
This is the behaviour to be expected when the displacement effect predominates 
(Lees 1953; Stewartson 1955). With an asymptotic solution for 5 -+ 0 known, 
the solution to the ( 5 )  can be obtained by forward integration from the origin 
using Runge-Kutta or predictor-corrector methods. 

The asymptotic solution to ( 5 )  for 5 + 0 is 
n 
3 

x = 2 ( 3 t @ + - - -  p+ ... 8n2 + 2n 

The derivation of this equation can be found in the Ph.D. thesis of the author 
(1970). The first term in (6) is the flat-plate solution for zero incidence and is 
the predominant term for 6 -+ 0. For n > 1 the second term in the solution can 
be neglected without introducing much error, first because, as ,$ -+ 0,  tn becomes 
much smaller than 5% and second because the coefficient of 5" decreases with 
increasing n.  For n = 1, i.e. a flat plate at an incidence, (6) reduces to 

For 5 = 0.001 the second term in the above solution is 10 % of the first term and 
for 5 = 0.0001 it is only 1.5 yo. Therefore for a sufficiently small argument the 
flat-plate solution may be taken as the starting value with reasonable accuracy. 

The author (1970) and Stollery (1970) have shown that the numerical solution 
of Cheng's equation over concave surfaces oscillates for large arguments. Similar 
oscillatory behaviour has been noted by Cheng & Kirsch (1969) in their study of 
intense explosions. This oscillatory behaviour may be examined by asymptotic 
solution of the equation for large arguments. 

4. Asymptotic solution of Cheng's equation for large arguments 
The equation to be solved asymptotically is the scaled version of Cheng's 

viscous-interaction equation; namely equation ( 5 ) .  We now put A* = z-fln, 
where A* is the scaled displacement thickness, and by rewriting ( 5 )  in terms of 
A* obtain 

A*{[(A*++n) (A*r+n[n-1)]4}' = 1. (8) 

An asymptotic solution of A* as 5 --f co can be obtained if we assume that A*+O, 
which means that this analysis applies for concave surfaces only. We now rewrite 
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which, for A* + 0 as 5 + co gives 

A*[(n[2"-1)4]' = 1, 

and on differentiation 

The above expression for A* reveals an interesting phenomenon. Decaying 
solutions of the displacement thickness A* exist only for n > 4 as 5 -+ 00, i.e. 
there are some compression surfaces where the displacement thickness increases 
with increasing distance far from the leading edge. We shall discuss this charac- 
teristic in detail in the next section. 

We now rewrite A* as 

5+n, (11) 
2 

ni(2n - i) 
A* = z - g n -  

and substitute in (8) to obtain 

*(A* +D.$-,) [(A*+En+D@-n) (A*'+ntn-l+E@-n)]' 

= [(A*+Cn+D$-n) (A*'+n5n-1+E@-n)]*, (12) 

where D = 2/n*(2n- i), E = (3-2n)/n4(2n- 1). 

After differentiation we approximate the resulting equation for A* + 0 and 
6 -+ co and obtain the following second-order ordinary differential equation with 
variable coefficients: 

This equation is identical to the generalized Bessel equation 

x2y" + %(a + 2 b d )  9' + [C + d@- b( 1 - a - T )  ~l;" + b2x2"] y = 0, (14) 
with the oscillatory solution 

Y , ( d X " / S )  9 (15) y = &-de--b~'ir 

where yp = A,J,+A,J-,, p = (l/s){~(l-a)2-c]k 

On comparing (13) with (14) we find that 

a = +(2n+ l), b = 0, c = 0, 

d=lni(2n-i)2,  2 s = n - - ,  p =  (1-2n)/(4n-3). 

Hence A* = @(1-2n) [A,J(X) +A,J-,(X)I, (16) 

where P-$, 
(2n - 1) 

x = 2  
412-3 

and A,  and A ,  are constants. Equation (16) clearly demonstrates the oscillatory 
behaviour of A* for large arguments. 

5. Discussion 
The results of the numerical solution of Cheng's equa.tion for some concave 

surfaces are plotted in figure 5. This figure demonstrates clearly the oscillatory 
behaviour of Cheng's equation, which was shown analytically in the previous 
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FIGURE 5. Theoretical prediction of pressure for a family of shapes yw N xn. 

section. The stronger the concave nature of the surface the higher is the frequency 
of the oscillations but the oscillations damp out quickly in the downstream 
direction. As the flow moves along the surface the dominant influence changes 
from that of displacement to that of incidence. For small f;, or A2X2 + a4M4,, 
the boundary layer being governed by the displacement effect, the pressure 
drops despite the concave nature of the surface. For large E; (a4M4 9 A2X2), 
the dominant effect being incidence, the pressure should approach the inviscid 
value with the geometric surface of the body as the effective body shape. 
Therefore 

and with x, = tn we obtain 
Pe/PaW2M: = (%&3‘, 

pJpm ya2M2, = (2n2 - n) g2n-2. 
This equation is in fact the equation of lines about which the pressure curve 
oscillate and which appear as straight lines in figure 5.  Similar results can be 
obtained for the boundary-layer growth and heat-transfer rate, since these are 
functions of the pressure ratio. 

Cheng’s equation does not give oscillating solutions for convex surfaces, as 
was demonstrated by Stollery (1970) and Mohammadian (1970). In  the study of 
viscous interaction over a convex corner, Sullivan (1968) and Stollery (1970) 
modified Cheng’s method by using the tangent-wedge approximation instead of 
the Newton-Busemann pressure law. Their results show that the modified Cheng 
method does not yield oscillating solutions when applied to concave and convex 
surfaces. This suggests that the cause of the oscillatory behaviour resulting from 
Cheng’s method in its original form is the centrifugal correction in the Newton- 
Busemann pressure formula. 
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FIGURE 7.  The distribution of the scaled displacement thickness as a function of pressure 

ratio for concave surfaces z, = 5" obtained by Cheng's method. 

6. Super- and subcritical behaviour of the boundary layer 
Perhaps the most striking feature of Cheng's method in its original form, as 

well as in the modified version, is the super- and subcritical behaviour of the 
boundary-layer growth over conmve surfaces. (A boundary layer is said to be 
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FIGURE 8. Variation of displacement thickness with respect to p / p m  over concave surfaces 

(yw N xR) using the modified Cheng method with M a  = 0.3. 

supercritical when dS*ldp < 0 and subcritical when dS*/dp > 0.) Figure 6 shows 
the growth of the boundary layer for concave surfaces of the form y - x”, 
obtained using Cheng’s method. This figure clearly indicates the super- and sub- 
critical behaviour of the boundary-layer growth over concave surfaces. For n = $, 
the displacement thickness remains constant with increasing distance from the 
leading edge. For n < #, the boundary-layer behaviour becomes subcritical, 
i.e. the displacement thickness increases with increasing distance. For n > # 
the boundary layer has a supercritical behaviour. The sub- and supercritical 
behaviour of the boundary layer for large arguments is also demonstrated in 
figures 7 and 8, where the displacement thickness is plotted against the surface 
pressure. 

7. Comparisons between the theoretical results and experimental data 
Figure 9 compares pressure measurements at M = 12.25 over the cubic surface 

with the results from viscous-interaction theory. Cheng’s theory predicts pressure 
fairly well near the leading edge, where the flow field is dominated by the dis- 
placement effect, but further downstream, where incidence is the dominant effect, 
the comparison with Cheng’s theory in its original form is not realistic because 
of the oscillation occurring in the solution. Figure 9 also compares the ex- 
perimental data with the modified Cheng method. As expected there is no oscilla- 
tion in the results, the boundary-layer thickness decreasing steadily as the 
pressure rises. The fairly good agreement between measurement of pressure and 
the prediction of viscous-interaction theory using the tangent-wedge approxima- 
tion suggests that the choice of pressure law is important in dealing with the 
joint effect of viscous interaction and incidence. 

Heat-transfer measurements on the cubic model are compared with the predic- 
tionsof the original and modifiedcheng method in figure 10. This figure shows that 
Cheng’s theory compares favourably with our measured heat-transfer rate near 
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FIGURE 9. Pressure measurements for the cubic surface compared with the results of the 
viscous-interaction theories; M = 12.25, p ,  = 1600psia, To = 1300°K, R = 0.86 x lo5. 
-0-, measurements; ---, Cheng's original method; - - -, modified Cheng method. 
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FIGURE 10. Heat transfer on the cubic model; 1M = 12.25, p ,  = lBOOpsia, To = 1300 OK, 

R = 0.86 x lo6. -0-, line through experimental data; , Cheng's original method; 
-, modified Cheng method. 

the leading edge, but greatly overestimates or underestimates the measurements 
downstream because of the oscillatory behaviour of the solution. When the more 
realistic tangent-wedge approximation is used, the heat-transfer prediction shows 
the right trend but the rate is not adequately predicted in the region of strong 
adverse pressure gradient, where the boundary-layer profiles are markedly 
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FIGURE 11. Displacement thickness on the cubic model; M = 12.25, p a  = 1600psia, 
To = 1300"K, R = 0.86 x lo6, CL = 0. ---, Cheng's original method; -- , modified 
Chengmethod; ---, Sells' (1966) program; -V-, edge of the boundary layer (taken from 
photograph). 

non-similar. It is not too surprising that Lees' assumption of local flat-plate 
similarity fails for cases with strong adverse pressure gradients. It may be noted 
that Lees' solution also assumes that there is no normal pressure gradient. Kepler 
& O'Brien (1962) and McLafferty & Barber (1959) have measured the static pres- 
sure in turbulent boundary layers on concave walls, and Myring & Young (1968) 
have compared the isobars in those two experiments to the external Mach lines 
extrapolated into the boundary layer. Myring & Young have shown that the 
static pressure is constant along Mach lines, and not along normals to the 
surface. Therefore, strong normal pressure gradients may exist on surface 
normals. 

The oscillations are shown more clearly in figure 11, where the measured dis- 
placement thickness from the schlieren photograph is compared with values 
from the viscous-interaction t,heories. 

For tests of a convex surface the model shown in figure 1 (b) was used. The 
wedge angle a t  the leading edge was 18", so that the Mach number behind the 
leading-edge shock was theoretically 4.8. The boundary layer remained attached 
and laminar, according to the schlieren photographs and heat-transfer records, 
and grew rapidly but smoothly in the favourable pressure gradient. Figure 12 
shows a comparison between measured pressures and those from various theories. 
Because MZm2/XE % 1 over most of the wedge, the pressure on the wedge is 
sensibly constant to within 0.3 in. of the leading edge, the nearest point at which 
measurements were taken. This suggests that strong viscous interaction is con- 
fined to a region very close to the leading edge and that elsewhere the flow field 
is strongly affected by the incidence. This is probably the reason for the good 
agreement between the tangent-wedge approximation (no viscous interaction) 
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FIGURE 12. A comparison of pressure measurements on the convex model with results 
from different theories; M = 12.25, p o  = 1600psia, To = 1300 "K, R = 0-86 x lo6. 0, experi- 
mental data; - - - , Cheng's original method, -, modified Cheng method; - --, tangent- 
wedge (inviscid) method. 
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FIGURE 13. A comparison of heat-transfer measurements on the convex model with results 
from the viscous-interaction theories; M = 12.25, To = 1300 "K,po = 1300psia, R = 0.86 x 
lo5. 0, experimental data; ---, Cheng's original theory; -, modified Cheng method. 

and the measurement. Cheng's method does not give an oscillatory solution for 
convex surfaces, in contrast to the concave case, and, although the pressure 
prediction is too low over the wedge, it is in a fairly good agreement at the rear 
part of the model. The modified Cheng method slightly overestimates the pressure 
on the flat parts of the model, but agrees very well on the expansion shoulder. 
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Stollery (1970) found almost the same trends when applying viscous-interaction 
theories to an expansion corner. 

Figure 13 gives a comparison between heat-transfer measurement and results 
from the two viscous-interaction theories, both of which give predictions which 
are in reasonable agreement with the experimental data. Therefore it appears 
that the assumption of local flat-plate similarity is possibly reasonable in cases 
involving favourable pressure gradients. 

8. Conclusion 
It has been shown numerically and analytically that the viscous-interaction 

theory due to Cheng et al. (1961) gives oscillating solutions for large arguments, 
when applied to concave surfaces. Therefore this method cannot be used for 
pressure and heat-transfer predictions over surfaces with adverse pressure 
gradients. Nevertheless, near the leading edge, where the dominant effect is the 
displacement thickness, the pressure and heat-transfer predictions from Cheng’s 
method seem to be adequate. A modified Cheng method, which uses a tangent- 
wedge approximation, does not give oscillatory solution for concave bodies and 
predicts the surface-pressure distribution reasonably well over the cubic model. 
It appears that the choice of pressure law is important in any analysis involving 
viscous interaction. Agreement between heat-transfer measurements and values 
predicted by the modified method is somewhat less satisfactory in the region 
of strong pressure gradients, where the boundary-layer profiles are markedly 
non-similar. Therefore it may be concluded that Lees’ similarity solution 
for the boundary-layer growth is not suitable for heat-transfer prediction in 
cases of non-similar boundary-layer profiles. Both Cheng’s original method and 
the modified version may be used to predict surface pressure and heat transfer 
on convex surfaces, although the predictions by the modified version are slightly 
better. It is also shown that the viscous-interaction theories described in this 
paper deviate in some cases from the usual assumption of supercritical behaviour 
of the boundary layers over concave surfaces. 

The author would like to thank Mr J. L. Stollery and Prof. N. C. Freeman for 
their helpful guidance during the course of this study. 
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( b )  

FIGURE 2.  Photographs of tho convex ( a )  pressure and ( b )  heat-transfer models. 
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FIGURE 3. Schllereu photograph of flow over the cubic surface; M = 12.25, K = 0.86 x lo5. 

FIGURE 4. Schliereri photograph of flow over the rear part of the convex 
surface; M = 12.25, R = 0.86 x lo5. 

MO HAMMADIAN 


